03-08-2023, 02:41 PM
Superconductor Breakthrough Findings Replicated, Twice, in Preliminary Testing
Humanity may be in the throes of another breakthrough that's every bit as impactful as the invention of the transistor and the advent (and eventual vindication) of quantum computing. LK-99, as it's been named, is a new compound that researchers believe will enable the fabrication of room-temperature, ambient-pressure superconductors. Initially published by a Korean team last Friday, frantic work is underway throughout the research world to validate the paper's claims. For now, two separate sources have already provided preliminary confirmations that this might actually be the real thing — Chinese researchers have even posted video proof. Strap in; this is a maglev-powered, superconducting ride.
Superconductors, a wild category of compounds that can conduct electricity without any losses, have been a metaphorical goose chase for years now, with multiple research teams claiming (and then retracting) papers and announcements of its achievement. The reason is simple: Few things come close to the potential of an actual superconductor discovery in terms of what it can do for humanity's current and future technology. Imagine if your 16-core mainstream CPU (which likely requires a competent watercooling solution to avoid incinerating itself) operated without power losses — no current leakage, no electricity waste in the form of heat. Superconductors mean almost perfectly efficient computing.
Scale that to the world's supercomputers, and you begin to get an idea of the performance impact when trillions of transistors based on superconducting materials work in tandem across GPU and CPU tiles to accelerate things like Artificial Intelligence (AI) workloads. Or scale it in the realm of consumer electronics, quantum computing (where superconductors are important for Josephson junctions), and magnets in general (maglev trains, tokamak fusion reactors, Magnetic Resonance Imaging (MRI), electric motors and generators...)
Humanity may be in the throes of another breakthrough that's every bit as impactful as the invention of the transistor and the advent (and eventual vindication) of quantum computing. LK-99, as it's been named, is a new compound that researchers believe will enable the fabrication of room-temperature, ambient-pressure superconductors. Initially published by a Korean team last Friday, frantic work is underway throughout the research world to validate the paper's claims. For now, two separate sources have already provided preliminary confirmations that this might actually be the real thing — Chinese researchers have even posted video proof. Strap in; this is a maglev-powered, superconducting ride.
Superconductors, a wild category of compounds that can conduct electricity without any losses, have been a metaphorical goose chase for years now, with multiple research teams claiming (and then retracting) papers and announcements of its achievement. The reason is simple: Few things come close to the potential of an actual superconductor discovery in terms of what it can do for humanity's current and future technology. Imagine if your 16-core mainstream CPU (which likely requires a competent watercooling solution to avoid incinerating itself) operated without power losses — no current leakage, no electricity waste in the form of heat. Superconductors mean almost perfectly efficient computing.
Scale that to the world's supercomputers, and you begin to get an idea of the performance impact when trillions of transistors based on superconducting materials work in tandem across GPU and CPU tiles to accelerate things like Artificial Intelligence (AI) workloads. Or scale it in the realm of consumer electronics, quantum computing (where superconductors are important for Josephson junctions), and magnets in general (maglev trains, tokamak fusion reactors, Magnetic Resonance Imaging (MRI), electric motors and generators...)